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ABSTRACT

Targeted therapies interfering with specifically one protein activity

are promising strategies in the treatment of diseases like cancer.

However, accumulated empirical experience has shown that

targeting multiple proteins in signaling networks involved in the

disease is often necessary. Thus, one important problem in

biomedical research is the design and prioritization of optimal

combinations of interventions to repress a pathological behavior,

while minimizing side-effects. OCSANA (optimal combinations of

interventions from network analysis) is a new software designed

to identify and prioritize optimal and minimal combinations of inter-

ventions to disrupt the paths between source nodes and target

nodes. When specified by the user, OCSANA seeks to additionally

minimize the side effects that a combination of interventions can

cause on specified off-target nodes. With the crucial ability to

cope with very large networks, OCSANA includes an exact solu-

tion and a novel selective enumeration approach for the combina-

torial interventions’ problem.

Availability: The latest version of OCSANA, implemented as a plugin

for Cytoscape and distributed under LGPL license, is available

together with source code at http://bioinfo.curie.fr/projects/ocsana.

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Cellular functions and activities are governed by complex sig-

naling and regulatory networks. Diseases arise from abnormal

behavior in these networks. Thus, the design of targeted thera-

pies from a systems biology approach aims to identify which

molecules to intervene in these networks, to repress a patho-

logical behavior while minimizing side effects. Accumulated

empirical experience has shown that combination or multi-

component interventions are necessary to cope with the redun-

dancy and multi-functionality that characterize biological

networks (Fitzgerald et al., 2006). Redundancy requires for

several pathways to be targeted, as alternate routes can com-

pensate the disrupted pathways’ function. Multi-functionality

implies that intervening molecules that play a central role in

the cell may cause side effects, requiring alternative points of

intervention (Samaga et al., 2010). Some methods have been

proposed to address some aspects of this problem (Hädicke

and Klamt, 2011; Haus et al., 2008; Klamt et al., 2006).

However, limited scalability of the methods and the lack of

a prioritization criterion are hindering factors for their applic-

ability to large biological networks. We introduce OCSANA, a

software for the identification and prioritization of optimal

minimal combinations of interventions (CIs). We define a CI

as a set of nodes such that each elementary path (a path from

source to target node) contains at least one node from this set.

This CI set indicates the nodes to be intervened to disrupt all

the identified elementary paths. The interventions can be knock

outs (deletion of genes/proteins) and knock ins (overexpres-

sions of genes/proteins). A CI is minimal if no proper subset

of the CI is a CI itself, and its optimality is defined in terms of

a heuristic scoring (see Section 2). To ensure the method’s

scalability, OCSANA includes an EXACT SOLUTION via an

adaptation of Berge’s algorithm (Berge, 1989) and a novel

SELECTIVE ENUMERATION approach based on a weighted-

greedy algorithm. The EXACT SOLUTION computes all minimal

CIs of all sizes, and, similar to (Hädicke and Klamt, 2011), it

is adapted to compute all CIs up to a specified size. The

SELECTIVE ENUMERATION computes optimal minimal CIs up to

a specified size, and it can be parametrized to identify such CIs

sets by FULL ENUMERATION.

2 METHODS

OCSANA is implemented as a plugin to the open source network ana-

lysis and visualization software, Cytoscape (Shannon et al., 2003). It

uses the Java library BiNoM (Zinovyev et al., 2008), to facilitate the

import and analysis of networks. Based on the network’s structure,

OCSANA incorporates a scoring with three purposes: to evaluate

the optimality of nodes to become part of a CI, to efficiently compute

optimal solutions in the SELECTIVE ENUMERATION and to prioritize

the identified minimal CIs. The scoring of a node is based on

(i) the lengths of the paths from the node of interest to the targets,

(ii) the type of effect on target nodes (e.g. activation/inhibition

effect), (iii) side effects with respect to off-target nodes, (iv) the

number of elementary paths in which the node participates and

(v) the number of targets that such node can reach simultaneously. In

the Supplementary File Supp1_AlgDescription, we provide a description

of the scoring and the algorithms underlying the software.*To whom correspondence should be addressed.
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Algorithm 1. Algorithm outline to compute CIs

Input/mandatory: A network (directed signed graph), a set of source

nodes, target nodes and a set of parameters.

Input/optional:A set of complementary nodes assigned as off-target nodes

(i.e. side effects).

Output: Prioritized list of optimal CIs.

1. Pre-processing step: Compute the collection of elementary paths, that

is, paths from source nodes to target nodes according to the selected

parameters for the path analysis.

2. Score the nodes present in the elementary paths and sort them in a

descending order.

3. Compute the so-called minimal hitting sets (MHSs) for the elementary

paths according to the selected algorithm approach and sort them ac-

cording to OCSANA’s score. This sorted list of MHSs is the sought list of

prioritized optimal CIs.

2.1 Software features

Listed below are some of the characteristics of OCSANA’s software:

(1) Acquisition of the different tools from Cytoscape and BiNoM:

(a) A graphical user interface to launch and edit

networks, (b) Upload of networks in BioPAX, SBGN and SBML

formats and (c) Different path analyses available for the pre-pro-

cessing step.

(2) The user can select between exact solution and selective enumer-

ation approaches.

(3) Optional analysis on side effects with respect to off-target nodes.

(4) Selection of maximum size of CIs to be identified.

(5) Visualization of results in Cytoscape.

3 PERFORMANCE TESTING AND APPLICATION

Testing performance.Weused three biological networksof increas-

ing size. The interaction graph for Epidermal Growth Factor

Receptor (EGFR) signaling introduced by (Samaga et al., 2009),

an Epidermal Growth Factor Family (ErbB) family signaling net-

work involved in breast cancer and a human epidermal growth
factor receptor 2 positive breast cancer network (HER2þ BCN).

All the details on the computations and results are included in the

Supplementary File Supp2_PerformanceGraphs. We tested

OCSANA’s time performance to compute all CIs up to size 5

(and 6 as well for the HER2þ BCN) by its EXACT SOLUTION

(Berges’s algorithm) and compared it with its SELECTIVE

ENUMERATION considering either FULL ENUMERATION (exhaustive

search) or by reducing the search space to the most optimal can-

didate CIs (optimal solutions). All the details on the computations

and results are included in the Supplementary File
Supp2_PerformanceGraphs. In Figure 1, we present a summary

of the results across the three different path analyses available in

OCSANA:
EGFR network. Across the different algorithms and path ana-

lyses, the time performance is identical.
ERbB family network. For shortest and optimal and subopti-

mal path analyses, Berge’s algorithm is slower than FULL

Fig. 1. Comparison of OCSANA’s performance on three different biological networks under different choices of path analyses. Rows A1, B1 and C1

show the characteristics of each network. Rows A2, B2 and C2 show the number of elementary paths and nodes according to the selected source nodes

and target nodes in each network. On rows A3, B3 and C3, we present OCSANA’s time performance using Berges algorithm to compute all CIs up to

size 5. Rows A4, B4 and C4 show the time performance to compute with the FULL ENUMERATION all CIs up to size 5; the full enumeration is done

considering the SELECTIVE ENUMERATION parametrized to perform an exhaustive search. On rows A5, B5 and C5, we show the time performance to

compute all CIs up to size 5 by SELECTIVE ENUMERATION, reducing the search space to consider only optimal candidate CIs. Finally, on rows C5, C6 and

C7, it is shown OCSANA’s time performance to compute all CIs up to size 6 by Berge’s algorithm, FULL ENUMERATION and SELECTIVE ENUMERATION.

All computation were made on a desktop computer with a quad-core Intel� Xeon� CPU X5472 3.00 Ghz processor and 12 GB of random access

memory

2

P.Vera-Licona et al.

 at IN
SE

R
M

 on M
ay 21, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt195/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt195/-/DC1
http://bioinformatics.oxfordjournals.org/


ENUMERATION. For the all non–self-intersecting path analysis,

Berge’s approach outperforms the FULL ENUMERATION. Across

the different path analyses, the SELECTIVE ENUMERATION outper-

forms Berge’s algorithm. Finally, we see that for the three path

analyses, at most 12% of the search space was needed in the

SELECTIVE ENUMERATION, thus providing evidence that

OCSANAs scoring aids to correctly identify all CIs within its

optimal solutions.

HER2þ BCN. Under shortest path analysis, the EXACT

SOLUTION performs poorer in comparison with FULL

ENUMERATION and SELECTIVE ENUMERATION to compute all CIs

up to size 5 and 6. For example, to compute all CIs up to size 6,

the EXACT SOLUTION takes 410h, whereas SELECTIVE

ENUMERATION takes �8 min to find the same set of CIs obtained

by the EXACT SOLUTION. To compute CIs up to size 5 under opti-

mal and suboptimal and all non–self-intersecting paths analyses,

the EXACT SOLUTION outperforms the FULL ENUMERATION,

whereas the SELECTIVE ENUMERATION outperforms the

EXACT SOLUTION. We observe that none of the algorithms

was able to compute all CIs up to size 6 in 512h. In this

case, a method allowing finding a significant number of CIs

in a reasonable time becomes useful. Thereupon, we

show that the SELECTIVE ENUMERATION finds 40% of all the

CIs up to size 6 in just 95 s (the total number of CIs

was obtained by letting the EXACT SOLUTION run for more than

a day).
Application example. Using the cell-fate decision network by

(Calzone et al., 2010), in the Supp3_ApplicationExample file,

we present an application of OCSANA to identify therapeutic

CIs. We show that our findings are complementary to the basic

network theory approaches, and we validated them with recent

literature.

4 FUTURE WORK

Future work will include modifications in the scoring method to
incorporate biological data available (e.g. gene expression levels).

We also contemplate to including a more realistic model of signal
propagation and incorporating it in the heuristic scoring.
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Hädicke,O. and Klamt,S. (2011) Computing complex metabolic intervention

strategies using constrained minimal cut sets. Metab. Eng., 13, 204–213.

Haus,U.U. et al. (2008) Computing knock-out strategies in metabolic networks.

J. Comput Biol, 15, 259–268.

Klamt,S. et al. (2006) A methodology for the structural and functional analysis

of signaling and regulatory networks. BMC Bioinformatics, 7, 56.

Samaga,R. et al. (2009) The Logic of EGFR/ErbB signaling: theoretical

properties and analysis of high-throughput data. PLoS Comput. Biol., 5, e1000438.

Samaga,R. et al. (2010) Computing combinatorial intervention strategies and

failure modes in signaling networks. J. Comput. Biol., 17, 39–53.

Shannon,P. et al. (2003) Cytoscape: a software environment for integrated models

of biomolecular interaction networks. Genome Res., 13, 2498–2504.

Zinovyev,A. et al. (2008) BiNoM: a Cytoscape plugin for manipulating and

analyzing biological networks. Bioinformatics, 24, 876–877.

3

OCSANA

 at IN
SE

R
M

 on M
ay 21, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/

