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Abstract

Biological functions arise from interaction between a defined set of
components, thereby defining modules. Systems biology approaches
try to infer module networks from high-throughput ’omics’ data. We
have created a module network algorithm relying on probabilistic opti-
mization techniques, capable of integrating heterogeneous data types
for the candidate regulators. We summarize here the results of the
application of this algorithm on two different datasets linked to can-
cer.

Modular cell biology

Most biological functions arise from interactions among many different com-
ponents (proteins, DNA, RNA, metabolites). Those discrete sets of compo-
nents form different modules, a critical level of biological organization. Many
well-established biological functions can be cited as examples of modular
structures, like protein synthesis, DNA replication, glycolysis, signal trans-
duction. Some of those modules have even been reconstructed in vitro. The
modules can be insulated from or connected to each other, thereby forming
a dynamical network structure. Functional modules are not necessarily rigid



structures and their components may belong to various modules at different
times. It is also likely that evolution is shaping the composition and the
functional relationships between the modules. Those modules can hardly
be discovered by ’gene-centric’ approaches, that have been heavily used in
molecular biology so far. More global and systematic approaches are nec-
essary to identify the core components of the modules, which is one of the
main goals of the emerging field of systems biology [3].

Module network algorithms

During the last decade, biological research has switched from a relatively
data-poor science, mostly qualitative, to a data-rich, quantitative one. This
change is of course exemplified by the rapid adoption of the microarray tech-
nology to measure gene expression data on a genomic scale in many organ-
isms and under a wide variety of conditions. There are nowadays several
technological platforms available to potentially measure all types of cellular
components in a high-throughput, genome-scale manner. Those techniques
are collectively referred to as 'omics’ data production (genomics, transcrip-
tomics, proteomics, metabolomics, localizomics, etc.) [6]. The application of
those techniques on model organisms is already generating hundreds of giga-
bytes of data, most of them publicly available through portals like GenBank,
GEO and others. However, there are some drawbacks that should be taken
into account for the analysis of those datasets. Some techniques generate
quite a lot of false positives, mainly due to technical artefacts. Standard-
ized representations of the data are not the rule, making cross comparisons
between experiments sometimes difficult. The quality of the data is not
always assessed properly and the experimental conditions are often poorly
annotated. Despite those problems, those datasets constitute a novel and ex-
citing challenge for computational biologists to identify functional modules at
a system level. In recent years, many research groups have proposed various
algorithms to analyze ’omics’ datasets [6]. Segal and co-workers introduced
an algorithmic approach to reconstruct module network from a large com-
pendium of microarrays. Their method is using a statistical model to infer
modules of co-expressed genes and their corresponding regulators [8].



The LeMoNe algorithm

We have further extended the framework proposed by Segal and colleagues
into an algorithm called LeMoNe, standing for Learning Module Networks.
Our approach is using different probabilistic optimization techniques to pro-
duce a more reliable and robust result [4]. The algorithm is divided mainly
in two steps. In the first one, we identify cluster of co-expressed genes, where
gene expression for a given cluster is modeled by a normal mixture distribu-
tion:

p(X) = Z Onp(X | Hon, Un) (1>

Where C), denotes the group of conditions having a mean p,, and a standard
deviation o,. We are using a Gibbs sampling procedure to generate multiple,
equally probable, clustering solutions (usually more than 10). Each single
solution represents a different local optima. In order to have a robust result,
we construct a centroid representation of all clustering solutions, called the
tight clusters, corresponding to genes that are often associated together in all
previous clustering solutions. The tight clusters are extracted with a graph
spectral method [5].

For the second major step of the algorithm, we are assigning regulators to
each tight cluster of co-expressed genes. A hierarchical tree is build by group-
ing sets of conditions (i.e. experiments) having similar mean and standard
deviation. Then a pre-defined list of candidate regulators is build, most of
the times by simply using the Gene Ontology (GO) annotation and selecting
appropriate categories (for example Transcription Factor Activity or Signal
Transduction Activity). Regulators from the list are assigned to each node
of the hierarchical tree by logistic regression on the binary splits defined by
the set of hierarchically linked condition clusters (Fig. 1). Let Cy and C; be
two disjoint sets of conditions. Given a regulator with expression value x in
some condition, our model assumes there is a (hidden) binomially distributed
random variable Y such that Y = 0 if the condition is assigned to Cy and
Y =1 if it is assigned to C}, with probability

1
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(2)
Given the partition of conditions and their hierarchical tree, we know at each
tree node which conditions m belong to Cy and which to C;. Using Bayes’
rule, we can determine the parameters § and z which maximize the posterior



probability of assigning regulator R. This posterior probability is then used
as the score for R at this particular tree node and combined with the scores
at other nodes to compute a global assignment score. The parameter z is
interpreted as a split value, meaning if R is highly expressed (z,, > z) the
condition is assigned to one side of the split and if R is lowly expressed
(xm < z) to the other side. The parameter [ is determined by how well a
regulator fits the separation of conditions: if z,, > z for all m € C} and
Ty < z for all m € Cy (or vice versa), we can take § = +oo and obtain
a maximal posterior probability. If there is no split value which achieves a
good separation of conditions, 3 will be close to 0 leading to low values of
the posterior probability.

Figure 1: A tight cluster with its regulation tree and three assigned reg-
ulators. The bottom panel represents the co-expressed genes. Expression
values are color coded from low (red) to high (green). The vertical yellow
bars define groups of conditions having similar expression mean and stan-
dard deviation. The hierarchical tree on top is build by linking the different
groups of conditions. Regulators are assigned to the different nodes of the
tree, and their expression profile is shown with the same color scheme as for
the module genes.

Here again, in order to build a robust solution, we are generating multiple
hierarchical trees for each tight cluster and assigning multiple regulators for
each node of each tree. An ensemble score is then calculated, summing the
strength with which a regulator participates in each regulatory tree, allowing
us to prioritize the list of regulators for each tight cluster.
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When building the pre-defined list of candidate regulators, the classical
choice is to select genes having a prior: a regulatory activity like transcription
factors, signal transducers or kinases. In that case, the expression values are
exactly of the same type for the genes and the regulators, being measured
on the same microarray platform. However, looking at equation (2), we
can see that there is no need for the values x to be comparable in absolute
terms to the expression values determining the co-expression clusters. This
means that we can use expression values for different types of regulatory
molecules, measured with a different platform, like microRNAs (miRNAs).
There is also no need for the values x to be continuous, meaning that we can
consider regulators having discrete values. As we are using a probabilistic
model and the final regulator score is defined by a posterior probability, the
scores of mRNA, miRNA and discrete regulators can all be integrated and
compared on the same scale to determine the final module network. We
usually determine a cutoff score for assigned regulators by taking the top
1% of the distribution of all assigned regulators. We define a module as
a given tight cluster plus its associated list of high-scoring regulators. A
given regulator can be assigned to one or multiple tight clusters, therefore
the ensemble of modules is forming a module network.

Module network examples

We have applied our module network algorithm to the construction of mod-
ule networks from cancer related expression datasets. We first used a dataset
published by Lu and co-workers [7]. In this study, the authors compared the
classifying power of mRNA and miRNA expression data to discriminate be-
tween different types of cancer tissues. They measured expression values for
~ 12,000 mRNA and ~ 120 miRNAs using a standard microarray platform
and a proprietary solution respectively, on 89 different tissue samples. We
applied our algorithm on this dataset, including transcription factors, signal
transducers and miRNAs as candidate regulators. We obtained a set of 76
tight clusters for which a total of 294 high-scoring regulators were assigned
[2]. Within this set, ten different miRNAs were selected as high-scoring regu-
lators for seven modules. Fig. 2 shows an example of a module regulated by a
miRNA. This module is likely involved in epithelial homeostasis and the top
regulator is miR-200a. We could demonstrate with quite simple experiments
that this miRNA is indeed a key regulator of the module genes, probably



acting on them indirectly through the action of a ZEB transcription factor.
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Figure 2: A module inferred from mRNA and miRNA expression data mea-
sured on normal/tumor tissues. There are nine module genes (bottom panel)
and seven high scoring regulators (top panel). The tissue origin is indicated
by a color code at the bottom of the figure, as well as their disease status.
The regulators are prioritized by decreasing score.

More recently we applied our algorithm on a dataset of lymphoblastoid
cell lines made from blood samples of 90 patient having prostate cancer.
Both mRNA and miRNA expression levels were measured on those samples
and at the same time the degree of aggressiveness of the tumors were char-
acterized by a clinical parameter, the Gleason score [9]. We used the mRNA
expression data to build tight clusters of co-expressed genes, and then used
transcription factors, signal transducers, miRNAs and the Gleason score as
candidate regulators. In this particular case, the Gleason score was having
only two levels, being either ’low” or 'high’. We had expression data for
more than 40,000 mRNAs and more than 700 miRNAs. The output was a
module network consisting of 43 tight clusters composed of a total of 1,259
genes [1]. From the whole set of regulators assigned, we retained 496 unique
candidate regulators. Among them, 30% are miRNAs, a significant increase
compared to our previous analysis. Several of those miRNAs have been pre-
viously characterized as causal in human diseases, including some forms of
cancer. Interestingly, the Gleason score was also retained as a high-scoring
regulator, linked to three different modules enriched for cell proliferation, cell



growth and mitosis (Fig. 3). This parameter is of course not a regulator in
itself, but this result might be interpreted as a consequence of the degree of
aggressiveness of the prostate cancer, triggering subtle changes in expression
in the patient blood system. In this study, due to the specificity of our al-
gorithm, we could demonstrate that it is possible to simultaneously evaluate
heterogeneous types of regulators in one framework, including discrete ones.
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Figure 3: Simplified view of the module network inferred from lymphoblas-
toid cell lines expression data. On the left panel, modules are pictured as
purple diamonds, while regulators are depicted as circles, with a color corre-
sponding to different types of regulators. On the right panel, a zoom on the
module network is showing a clinical parameter, The Gleason score, linked
to three different modules, as well as other types of regulators.
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